Matrix Pearson equations satisfied by Koornwinder weights in two variables
نویسندگان
چکیده
We consider Koornwinder’s method for constructing orthogonal polynomials in two variables from orthogonal polynomials in one variable. If semiclassical orthogonal polynomials in one variable are used, then Koornwinder’s construction generates semiclassical orthogonal polynomials in two variables. We consider two methods for deducing matrix Pearson equations for weight functions associated with these polynomials, and consequently, we deduce the second order linear partial differential operators for classical Koornwinder polynomials.
منابع مشابه
Koornwinder polynomials and the XXZ spin chain
Nonsymmetric Koornwinder polynomials are multivariable extensions of nonsymmetric Askey-Wilson polynomials. They naturally arise in the representation theory of (double) affine Hecke algebras. In this paper we discuss how nonsymmetric Koornwinder polynomials naturally arise in the theory of the Heisenberg XXZ spin1 2 chain with general reflecting boundary conditions. A central role in this stor...
متن کاملMultiple attribute group decision making with linguistic variables and complete unknown weight information
Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...
متن کاملBCn-symmetric polynomials
We consider two important families of BCn-symmetric polynomials, namely Okounkov’s interpolation polynomials and Koornwinder’s orthogonal polynomials. We give a family of difference equations satisfied by the former, as well as generalizations of the branching rule and Pieri identity, leading to a number of multivariate q-analogues of classical hypergeometric transformations. For the latter, we...
متن کاملOn Pseudo Hermite Matrix Polynomials of Two Variables
Abstract. The main aim of this paper is to define a new polynomial, say, pseudo hyperbolic matrix functions, pseudo Hermite matrix polynomials and to study their properties. Some formulas related to an explicit representation, matrix recurrence relations are deduced, differential equations satisfied by them is presented, and the important role played in such a context by pseudo Hermite matrix p...
متن کاملSpecial functions and q-commuting variables
This paper is mostly a survey, with a few new results. The first part deals with functional equations for q-exponentials, q-binomials and q-logarithms in q-commuting variables and more generally under q-Heisenberg relations. The second part discusses translation invariance of Jackson integrals, q-Fourier transforms and the braided line. Last modified: August 26, 1996 Note: Report No. 1, Institu...
متن کامل